Estimation of the Uncertainty of Diffusion MRI Fiber Tracking Parameters with Residual Bootstrap

نویسندگان

  • C. T. Nguyen
  • S. Chung
  • J. I. Berman
  • R. G. Henry
چکیده

BACKGROUND AND MOTIVATION: A recent comparison of bootstrap approaches in the estimation of uncertainty of voxelwise DTI parameters such as FA and ADC demonstrated that the application of residual bootstrap (RB) provided an unbiased empirical non-parametric approach to characterizing the parameter uncertainty [1]. Fiber tracking (FT) based on diffusion MR has important applications for structural connectivity analyses of brain diseases [2] and pre-operative FT of the brain [3]. The RB analysis on voxelwise DTI parameters is not appropriate to characterize the uncertainty in the large 3D regions defined by FT. Therefore, we will illustrate the appropriate implementation of RB to obtain the uncertainty of fiber tracking parameters (FTPs) such as the number of streamlines, the length of a track, and the volume of a track in a fiber bundle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acqu...

متن کامل

Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap

We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical u...

متن کامل

BootGraph: Probabilistic Fiber Tracking Using Bootstrap Algorithm and Graph Theory

Introduction Bootstrap methods were recently introduced in diffusion tensor imaging (DTI) to investigate the measurement precision of tensor derived parameters such as the apparent diffusion coefficient or the fractional anisotropy (FA) value [1-5]. Furthermore, the cone of uncertainty (CU) [2] provides an estimation of the variation in the direction of the tensor’s principal eigenvector. This ...

متن کامل

Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution.

Constrained spherical deconvolution (CSD) is a new technique that, based on high-angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractogr...

متن کامل

Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach.

The bootstrap technique is an extremely powerful nonparametric statistical procedure for determining the uncertainty in a given statistic. However, its use in diffusion tensor MRI tractography remains virtually unexplored. This work shows how the bootstrap can be used to assign confidence to results obtained with deterministic tracking algorithms. By invoking the concept of a "tract-propagator,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009